Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
BMC Bioinformatics ; 24(1): 453, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036971

RESUMO

BACKGROUND: Genomic insights in settings where tumour sample sizes are limited to just hundreds or even tens of cells hold great clinical potential, but also present significant technical challenges. We previously developed the DigiPico sequencing platform to accurately identify somatic mutations from such samples. RESULTS: Here, we complete this genomic characterisation with copy number. We present a novel protocol, PicoCNV, to call allele-specific somatic copy number alterations from picogram quantities of tumour DNA. We find that PicoCNV provides exactly accurate copy number in 84% of the genome for even the smallest samples, and demonstrate its clinical potential in maintenance therapy. CONCLUSIONS: PicoCNV complements our existing platform, allowing for accurate and comprehensive genomic characterisations of cancers in settings where only microscopic samples are available.


Assuntos
Variações do Número de Cópias de DNA , Neoplasias , Humanos , Genoma , Genômica , Neoplasias/genética , Neoplasias/patologia , DNA de Neoplasias/genética
3.
Oncoimmunology ; 12(1): 2223094, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332616

RESUMO

Despite breakthroughs in immune checkpoint inhibitors (ICI), the majority of tumors, including those poorly infiltrated by CD8+ T cells or heavily infiltrated by immunosuppressive immune effector cells, are unlikely to result in clinically meaningful tumor responses. Radiation therapy (RT) has been combined with ICI to potentially overcome this resistance and improve response rates but reported clinical trial results have thus far been disappointing. Novel approaches are required to overcome this resistance and reprogram the immunosuppressive tumor microenvironment (TME) and address this major unmet clinical need. Using diverse preclinical tumor models of prostate and bladder cancer, including an autochthonous prostate tumor (Pten-/-/trp53-/-) that respond poorly to radiation therapy (RT) and anti-PD-L1 combinations, the key drivers of this resistance within the TME were profiled and used to develop rationalized combination therapies that simultaneously enhance activation of anti-cancer T cell responses and reprogram the immunosuppressive TME. The addition of anti-CD40mAb to RT resulted in an increase in IFN-y signaling, activation of Th-1 pathways with an increased infiltration of CD8+ T-cells and regulatory T-cells with associated activation of the CTLA-4 signaling pathway in the TME. Anti-CTLA-4mAb in combination with RT further reprogrammed the immunosuppressive TME, resulting in durable, long-term tumor control. Our data provide novel insights into the underlying mechanisms of the immunosuppressive TME that result in resistance to RT and anti-PD-1 inhibitors and inform therapeutic approaches to reprogramming the immune contexture in the TME to potentially improve tumor responses and clinical outcomes.


Assuntos
Microambiente Tumoral , Neoplasias da Bexiga Urinária , Masculino , Humanos , Linfócitos T Reguladores/metabolismo , Transdução de Sinais , Terapia Combinada , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/radioterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...